EUROPEAN COMMISSION

Thematic Priority:
SIXTH FRAMEWORK PROGRAM

_w||||| I}

Priority 2.5.3
INFORMATION SOCIETY TECHNOLOGIES
Unit G3 Embedded Systems

Project Acronym:

SOCRADES

Project Full Title:

Service-Oriented Cross-layer infRAstructure for
Distributed smart Embedded devices

Proposal/Contract No: EU FP6 IST-5-034116 IP SOCRADES

Deliverable D5.3.2

Generic Services Specification

Status: | Final

Version: | V1.0?

Dissemination Level?: | CONFIDENTIAL
Date: | 08.04.2009

Organization Name of the Lead Contractor for this Deliverable: Schneider Electric

1V0.x before peer-review approval, V1.0 at the approval, V1.x minor revisions, V2.0 major revision
2 See Annex for explanation of Dissemination Levels, as defined in the DoW

Status Description:

Scheduled
completion
date?:

Actual completion

M30 (End of February 2009) datet:

08.04.2009

Short document

The goal of this document is to specify a set of common and generic services that are

description: available on any device, and being application domain independent.
Author(s) Report/deliverable classification:
deliverable: o Deliverable
G- Candido |:| Three-Monthly Activity Report
|:| Six-Monthly Activity Report
|;| |;| Partner Schneider Electric Automation |:| |:| Loughborough University
A |:| |:| ABB |:| |:| Lulea University of Technology
% g |:| |:| APS GmbH |:| |:| Politecnico di Milano
57 [IBoliden AB L1]sap ac
=3 g [1] FlexLink Automation Oy. [1[I siemens AG
a ° |:| |:| Institut f. Automation und |:| |:| Tampere University of Technology
Kommunikation e.V. Magdeburg |:| |:| Jaguar Cars Ltd.
|:| |:| Kungliga Tekniska Hogskolan |:| |:| ARM Lid.
Schneider Electric Industries

Peer review approval : Approved

Rejected (improve as specified hereunder)

Date: 08.04.2009

Suggested
improvements:

Version History:

Version: | Date: Comments, Changes, Status: Person(s)5:

V0.1 January Initial Draft F. Depeisses (SE)
22nd, 2009

V0.2 February Update/Completion of existing chapters Gongalo Candido (SE)
3rd, 2009 Added Built-in Services, Persistence and Security

chapters

V1.0 March 24t, | Update/Completion based on SE team inputs Gongalo Candido (SE)
2009

3 As defined in the DoW

4 Scheduled date for approval
5 A list of company short tags can be found in DoW

2/28

Table of Contents:

VERSION HISTORY:cuetiiiireeiecrreeeecssseeeessssseessssseessssssesssssseesssssessssassssssssssssssassessssssssssssssssssssssssssssssssasssssssasssssssssssssans 2
1. INTRODUCTION ...cuueeiiirrreeecrreeecssseecssseeessssssessssseessssssssssssssssssssessssssssssssssessassssssssssssssnssss 5
LT PREAMBLEcoiiittttteee et eeettteeee e e eeetttee e e e e eeesasaaeeeeesesssasaasseessessssssasseesseessssasseeessessassassseessessssassseesessnsnrasseeeseesnnssrnnees 5
1.2. HOW TO SPECIFY THESE GENERICS SERVICEScccoettiuttterieeieeiirrereeeeeeesiseeeeesesesssssssssessssssssssssessssssssssssesssssssssnssees 6

2. RESOURCEStteeerireereereeessseessssssessssssessssssssssssssassssssasssssssssssssssssssssassssssasssssssassssssasssssssssssssssssssssessssssasssssssasssssne 6
2. 1. INTRODUGCTIONeeeieeuteeeeereeeeesteeeeesseeeesieeseeessseeeesssesessseeesssseeeassssesessseseenssssssessssesessesseessssssnssssesessssesensnnesensssesenns 6
2.2. SERVICE CLASS RESOURCE DESCRIPTIONcceuvvteieureeeerteeeeesureeessseeesesseesessssesssssssessssesssssssssssssssssssssesssssssssssssssssnns 9
2.3. DEVICE RESOURCE DESCRIPTIONcccettttuurreeeeeeieiisreeeeeeeeesssssssreeeseesssssssssesssssssssssssssssssssssssssssssssesssssssssesssssssssssees 10
2.4, SERVICE RESOURCEuuvvviiiiiieiiitiieeeeeeeeesiareeeeeeessssisssseseessesssssssssessssssssssssessssssssssssssssssssssssssssessssssmssssssseesssssssssnsees 12

3. RESOURCES LIFE CYCLE.......uuuttiiirtteeerreeeecereeeessssseessssseesssssseessssseessssssesssssssssssssssssssssessssssssssssssessssssssssassssssasssssss 13
3.1. RESOURCES IDENTIFIERScccettuureeeeeeteerurreeeeeeeeessssereeeesesssssssseeeeeessesssssessesssmssssssssssssesssssssssessssssssssssesesssnnsssnsens 13
3.2. DEVICE AND SERVICE RESOURCES STATE ...ccuuvvtiieteeeeeireeeeesteeeesssseessssseessesssessssssssssssessssssessssssssssssssssssssssessnsnees 13
3.3. SERVICE CLASS RESOURCE STATEuvvtiiiittieeeeteeeeseteeessssteeeessseressssseessssssessssssessssssssssssssssssssesssssssssssnssssessssssesssnees 14
3.4. RESOURCES OPERATIONS.ceteeuurtteeeeeiiritureeeeeeeeessisseseeeessessissssseeessssssssssssesssesssssmnsssnsees 15
3.5. DEPLOYING RESOURCESeeeeeiuveeeerreeeeeiseeeeeiseeeeesisseeesiseseeessseseesssssesssssssessssessesssessssssssesssssesessssssssssssesnssssesensses 15
3.5.1. Deploying @ SEIVICE CLASS.........ccvvvimiiiiiiiiiiiiiciiicicicc s 16
3.5.2. Deploying @ AUICEcuouvviviiiiiiiiiiiiiiicictit 17
3.5.3. DePIOYING 0 SCYVICEvvvviviiiiiiiiciiisieittt st 17

3.6. STARTING DEVICE AND SERVICE RESOURCESuuuvtiiiiiiieiiirteeeeeeieeiiiaseeeeseessssssseessssssssssssssssessssssssssssesssssssssnsees 18
3.6.1. SEATEING 0 SETVICE....cvvviviiiiviiiiiiietii ettt bbbt 18
3.6.2. SEATHING 0 AOUICE.coviiiiiiiiciiiicitc s 19

3.7. STOPPING DEVICE AND SERVICE RESOURCEScceuteiiiutteeeiiuereisiaeeeesisueessssssessssssessssssessssssesssssssesssssseesssssssessssees 20
3.7.1. SEOPPING B SETVICE .vvvviiivivinictetiietetct ettt bttt a et s ettt 20
3.7.2. SEOPPING 0 AOVICE. ..ottt 20

3.8. DELETING RESOURGCEScuvveieetreeeeereeeeeiseeeeessseeeesissesesisssseesssessesssesssssesessssessesssessssssssesssssesessssesessssesmssssesensses 21
3.8.1. Deleting a Service ClASS TESOUTCTEcueuruiriiiiiiiiiiiiiiiiiciiiisici et 21
3.8.2. Deleting @ SEIVICE TESOUTCO.vuvvviviiiisiitisisitisiitete ettt s bt 22
3.8.3. Deleting @ deviCe TESOUTTE..........cvovveveueieiesiiiiisiaeie ettt 22
3.8.4. Delete all resources from physSical deTICecccueueuiiiiiiiiininiiiiiiiiieicicccccttt e 23

3.9. RETRIEVE RESOURCES STATE ...uuvvvveeeeeeiieiurreeeeeeeeesisseereeeeeeessssssseeseesssessssssssessssssssssssssssesssssssssesssssssssssssesesssnssssssens 24

4. BUILT-IN SERVICES.......teeeerreeerrreerecsreeessssessssssasesssssessssssessssssssssssssesssssssssssssasssssssssssssssssssssasssssssessssssassssasssssss 24
4.T. SETUP SERVICESvveieiueeeeiitteeeeeteeeeestteesseteeessssseessssssessassessssssessssssssessasssesssssesssssssssssssssssssesssssssesssssssssssssssesnsssees 24
4.2. MONITORING SERVICEScceietieuurereeeeeiesiureeeeeeesessissseeeessesssssssessssesssssssssesssssssssssssssssssssssssssesesssssssssssssesssssnssssnsees 25
4.3, DIAGNOSIS SERVICESccceevveeeerreeeenreeeeeiseeeeeisseeeesissesesisssseesssessessssessssssesessssessessssssssssssesssssesesssssssssseessssseesensses 26

5. PERSISTENCE 27
6. SECURITY cauuuveeeeeeeeecsneeesesseecsssssesesssseesssssessssssssssssssessasssssssassssssssssssssssssssssssssssassssssssssssnns 28
REFERENCESotteeeteeeireeecsseeresssseessssseessssssessssssassssssassssssssssssssassssssassssssssssssssessssssasssssssssssssssssssssassssssassssassassssane 28
ANNEX A — DISSEMINATION LEVELStiirtteeieeeecnneeecssseseessssseessssssessssssessssssesssssssessssssssssssssssssassssssassssns 28

Figure 1: Device and hosted Services ... 5
Figure 2: Relationship between physical device, hosted logical device, hosted service and service class.......... 7

Figure 3: Resources layers, relations and available operations............cccoceeeiiviinninincc e 8

Figure 4: State Diagram RESOUTICE...........cciiviiiiiiiiiiiiic s 14
Figure 5: State Diagram “Service Class” ..ottt et 14
Figure 6: Built-in vs. dynamic deployed elements................cooiiriiiiiiiiiiic e 16
Figure 7: Diagnostic archit@CtUreo.oooiuiiiiiii e 27
Figure 8: Maintenance OPeration ... 27
List of Tables:
Table 1: Built-in Setup Service parametersooiciciiiiieiiiccce e 25
Table 2: Built-in Monitoring services parameters ... 26
Table 3: Built-in Diagnostic Service Parameters ...ttt 26
Table 4: Dissemination levels for a dOCUMENtccoiiiiiiiiiiiiiiii e 28

4/28

1. Introduction

1.1. Preamble

The goal of this document is to specify a set of common and generic services that are available on any
device, and being application domain independent. DPWS is the common web services middleware and
profile for devices, the DPWS specification [1] defines two fundamental elements: the device and its hosted
services. The device are the discoverable entity on the network, device can host services (they provide the
functional behaviour).

DEVICE 1
(Hosting SERVICE)

| HOSTED
SERVICEs

MESSAGEs
—

CLIENT 1

DEVICE m

CLIENT n (Hosting SERVICE)

| HOSTED
SERVICEs

MESSAGEs include discovery,
description, control, and
eventing

Figure 1: Device and hosted services

We consider those two elements: “device and hosted services” as fundamental resources of the DPWS
infrastructure/middleware. We intend to extend the DPWS infrastructure for deploying and managing in a
coordinated fashion both resources.

In this approach, the device is to be seen as the main logical element that abstracts an application element,
while its services represent the functionalities that a particular element allows others to exploit to accomplish
their own purposes. An application can be composed of several devices that interact between them through
the services hosted on those with no imposed topology a priori (orchestration or choreography).

By having the ability to easily deploy these devices and its services into a physical device available on the
network, the agility of the system is increased. This approach is generic enough to allow the integrator to
implement its services with the programming language that best fits its current needs, define the service
interfaces and then use it in a standardized manner through DPWS. The application will then be
discoverable and interoperable in the network.

The integrator has also the ability to manage the complete lifecycle of these resources in accordance with the
evolution of production goals.

So, these generics services facilitate incorporating and managing services (and applications) into devices;
enabling control, supervision, or management systems to install, to uninstall, to start and stop, “devices”
and/or “services”. Of course, the lifetime of the service is a subset of the lifetime of its host: the device. These
generics services allow devices to evolve and adapt their capabilities by installing new components.

5/28

1.2. How to specify these generics services

Two different approaches could be used for realizing such generic services, controlling the lifecycle of
devices and services: either use new proprietary Web services, or use the standard WS-Management services
with proprietary resources.

It is necessary to introduce first WS-Management. WS-Management specification [2] describes a general
WS* based protocol for managing systems such as PCs, servers, devices, Web Services, applications, and
other manageable entities. To promote interoperability between management applications and managed
resources, WS-Management identifies a core set of Web Service specifications and usage requirements that
expose a common set of operations central to all systems management. This comprises the abilities to:

o Get, put (update), create and delete individual resources, such as settings and dynamic values.
¢ Enumerate the contents of containers and collections, such as large tables and logs.

e Subscribe to events emitted by managed resources.

¢ Invoke specific management methods with strongly typed input and output parameters.

In each of these areas of scope, the WS-Management specification defines minimal implementation
requirements for conformant Web Service implementations. The implementation is free to extend beyond
this set of operations, and may also choose not to support one or more areas of functionality listed above if
that functionality is not appropriate to the target device or system. The WS-Management specification
defines a standard form to access resources, but it doesn’t define a resource description model. So, the user is
free to define the XML resource description model that best fits its application, and share it so that others can
interact with it.

Regarding proprietary Web services, they should provide more complex services which will offer the user a
more sophisticated level of information than simply get and set data values. Simple get and set data services
must be avoided, since it consist on replicate the functionality available through WS-Management. The
services should provide more intelligent responses (higher level) to the client based on available information
processing. For example, instead of simply getting a collection of maintenance parameters, a maintenance
service can provide a summary of activity focusing the most common points of interest, still based on those
parameters but executing some processing over it before sending it to the invoker.

As far as these generics services have the objective to manage and control the lifecycle of devices and
services, i.e. install, uninstall, start and stop. WS-Management specification fits really this need: the resources
being devices and services. For example, the create operation from WS-Management will allow the install
phase of the resource, the delete operation, the un-install phase of the resource. Furthermore, the
specification is open to extend this core set of operations (create, delete, get, and put) with custom
operations like start, stop, etc. Using WS-Management standard can open our devices to external tools since
they are compliant with an open standard.

2. Resources

2.1. Introduction

Before describing the resources, we could distinguish two phases in their lifecycle: the deployment phase
and the activation phase. The deployment phase is usually performed in two steps:

e The service implementation code is first uploaded on the device platform, using either a Web Service or
some platform-specific mechanism: depending on the technologies used by the platform and the service
implementation, the implementation may be usable immediately (e.g. when using interpreted code or
some dynamic code loading and linking mechanism) or may require a reboot (e.g. when the service
implementation must be integrated with the platform firmware).

6/28

¢ The device is configured by registering one or more service instances, based on the previously uploaded
service implementations.

This proposed model requires a new resource:

e The service class resource: this resource is used to describe the service implementation, which contains
both generic information that must be provided by all implementation types, and implementation-
specific information, in particular the service implementation code and initialisation parameters, when
the underlying technology supports dynamic code loading.

In the figure below, the relationship between the physical device, logical device, hosted service and service
class resources are presented in a UML diagram.

1 1 Physical Device Device Logical Device
-UuID <]
[* Jl>-ResourceURI
Dynamic Deployment
, Q |
1 1 1 ’ |
+Create() 1 |
+Get() 1 1 1 |
+Put() 1
:gg‘r?tt(‘)?() Setup Monitoring Diagnosis Resources possible to
+Stop() be dinamically deployed
+GetState() +..() +...0 +..() ~ T
s |
i |
0..* il |
V e |
Service Service Class

Hosted Service

-UuUID - ___ |-ResourceURI
-ResourceURI q -ServicelD K -ServiceClassID

Figure 2: Relationship between physical device, hosted logical device, hosted service and service class

The proposed architecture defines several elements with different objectives and functionalities.

The physical device will represent the device itself as a real-world physical entity — such as a PLC, an I/O
device, etc. This physical device will already embed some built-in services that allow deploying applications
but also other added-value services that allow the integrator to setup, monitor, and diagnose that particular
device. These services are deployed by the device builder, being immediately available when taking a new
device from the box. They cannot be removed or modified by the end-user — if the end-user wants to add its
own services, he can do it through dynamic deployment. These built-in services will be further detailed in a
following chapter of this document.

Regarding the application, it will be dynamically deployed in a form of logical devices. These logical devices
will represent the logical entities that can be observed from the current application, exposing their hosted
services as their capabilities that others can make use of. An application can even compose several of these
logical devices into several layers of increasing abstraction, in an orchestrated or choreography manner. A
logical device can be composed of several other logical devices that interact between them in a particular
way to accomplish current performance goals - application construction based on existing building blocks.
Both physical and logical devices can be retrieved as normal DPWS devices, although would be simple to
filter them apart using WS-Discovery filters by scope or device type. These logical devices are created,
deleted, started and stopped on the physical device through an implementation based on WS-Management
specification.

7/28

Logical devices will then host services according to the functionalities that each of them exposes. Hosted
services are instantiated from the services classes previously deployed on the physical device. In summary,
service classes consist of descriptions of service implementations that embed the implementation itself — this
way it is possible to be independent from the technology used to implement the services. A logical device
just needs to instantiate which service(s) it wants to host.

The next figure shows an example of a physical device with its own built-in and dynamically deployed
resources. The figure also focuses over the operations available to the different types of resources (physical
device, logical device, hosted service and service class).

PD
HS (Setup)
HS (Diagnosis)
HS (...) <
S
m
SC (Diagnosis)
Inplementation Inplementation Inplementation Inplementation
Create
Delete b
Start >
Stop =
[}
(m)
Q2
S
e
Create 5,
Delete
Implementation Inplementation

Legend:

PD - Physical Device

HLD — Hosted Logical Device
HS - Hosted service

SC - Service Class

Figure 3: Resources layers, relations and available operations

Each one of these element will be further detailed on the next sub-chapters.

8/28

2.2. Service class resource description

The service class model is used to describe service implementations. It is derived from the SCA
implementation model. A service implementation is characterized by the set of service interfaces (portTypes
described in WSDL files) it provides, the set of references to services that it may require and configurable
properties that control its behaviour. The service class model contains an additional element
(Implementation) used as a placeholder for technology-specific implementation data: it could be a class
name and optionally a jar file in Java, an entry point and a DLL on Windows or Linux, or a program and
some initialisation data for interpreters. Each technology will define the actual element structure that is
required to hold the implementation data.

The outline of the ServiceClass element is:

<dd:ServiceClass classld="xs:anyURI” __.>
<dd: Interface name="xs:NCName”? type=""xs:QName”/>*
<dd:Reference name=""xs:NCName” type=""xs:QName” mustSupply=""xs:boolean"?/>*
<dd:Property name=""xs:NCName” type=""xs:QName”
mustSupply="xs:boolean™? multiple="xs:boolean"?>*
default-property-value?
</dd:Property>
<dd:WSDLInfo targetNamespace=""xs:anyURI” location="xs:anyURI”/>*
<dd: Implementation/>
</dd:ServiceClass>

The following describes additional constraints on the above outline:
/dd:ServiceClass/@classId
The class id must be a unique URI used to identify univocally a service class within a device.
/dd:ServiceClass/dd:Interface/@name
The name must be unique within the service class.
/dd:ServiceClass/dd:Interface/@type

The type must be a QName referring to a portType defined in a WSDL file. The QName is composed
of the WSDL targetNamespace (or more precisely its associated prefix) and the portType name.

/dd:ServiceClass/dd:Reference/@name
The name must be unique within the service class.
/dd:ServiceClass/dd:Reference/@type

The type must be a QName referring to a portType defined in a WSDL file. The QName is composed
of the WSDL targetNamespace (or more precisely its associated prefix) and the portType name.

/dd:ServiceClass/dd:Reference/@mustSupply

mustSupply specifies whether the reference must be bound at deployment time. Its default value is
true.

/dd:ServiceClass/dd:Property/@name
The name must be unique within the service class.
/dd:ServiceClass/dd:Property/@type

The type must be a QName referring to a XML Schema type (either predefined or user-defined). The
QName is composed of the XML Schema targetNamespace (or more precisely its associated prefix)
and the local type name. In a first version, only predefined simple types will be supported.

9/28

/dd:ServiceClass/dd:Property/@mustSupply

mustSupply specifies whether the property must be bound at deployment time. Its default value is
true. When it is false, a default property value must be provided.

/dd:ServiceClass/dd:Property/@multiple

multiple specifies whether the property can receive multiple values at deployment time. Its default
value is false.

/dd:ServiceClass/dd:Property/default-property-value

It must be a simple or complex type content, valid with respect to the associated property type. It must
only be provided when the mustSupply attribute is set to false.

2.3. Device resource description

The device model is used to describe DPWS devices. It is derived from the information useful during the
discovery and metadata exchange process. It also contains subsections describing hosted services, which are
instances of the service classes described above. This device model will be used to describe both physical
and hosted logical devices. From a DPWS specification point of view they are the same, however its
purposes are entirely different: a physical device will represent the physical device itself, while a logical
device represents a part of the deployed application that exists in that physical device.

The outline of the Device element is:

<dd:Device ...>

<dd:Address>xs:anyURI</dd:Address>?

<dd:Types>list of xs:QName</dd:Types>?

<dd:Scopes>list of xs:anyURI</dd:Scopes>?

<dp:ThisModel ...>
<dp:Manufacturer ...>xs:string</dp:Manufacturer>+
<dp:ManufacturerUrl>xs:anyURI</dp:ManufacturerUril>?
<dp:ModelName ...>xs:string</dp:ModelName>+
<dp:ModelNumber>xs:string</dp:ModelNumber>?
<dp:ModelUrlI>xs:anyURI</dp:ModelUrI>?
<dp:PresentationUrl>xs:anyURI</dp:PresentationUri>?

</dp:ThisModel>

<dp:ThisDevice ...>
<dp:FriendlyName ...>xs:string</dp:FriendlyName>+
<dp:FirmwareVersion>xs:string</dp:FirmwareVersion>?
<dp:SerialNumber>xs:string</dp:SerialNumber>?

</dp:ThisDevice>

<dd:Service serviceld="xs:anyURI’?>*

<dd:ServiceClass classld="xs:anyURI"’/>
<dd:ServicePort>*
<wsa:Address>xs:anyURI</wsa:Address>
<wsa:ReferenceParameters>. . .</wsa:ReferenceParameters>?
<wsa:Metadata>. . .</wsa:Metadata>?
</dd:ServicePort>
<dd:Reference name=""xs:NCName’’>*
L
<wsa:EndpointReference>
<wsa:Address>xs:anyURI</wsa:Address>
<wsa:ReferenceParameters>. . .</wsa:ReferenceParameters>?
</wsa:EndpointReference>

10/28

<dd:DiscoveryHints onMultipleMatches="pickOne|fail”
bindingTime="deployment]runtime”
onReferencelLost="retry]ignore|fail”
serviceld="xs:anyURI"?>
<dd:Hint>+
<dd:Types>list of xs:QName</dd:Types>?
<dd:Scopes>list of xs:anyURI</dd:Scopes>?
</dd:Hint>
</dd:DiscoveryHints>

</dd:Reference>
<dd:PropertyValue name=""xs:NCName”’>*
</dd:PropertyValue>
</dd:Service>
</dd:Device>

The following describes additional constraints on the above outline:
/dd:Device/dd:Address

UUID for the device. When omitted, will be generated for a given device. This value is immutable.
/dd:Device/dd:Types

Set of types for the device. The dp:Device type is implicitly added to this set.
/dd:Device/dd:Scopes

Set of scopes for the device. When empty or absent, the default value is a set containing
"http://schemas.xmlsoap.org/ws/2005/04/discovery/adhoc".

/dd:Device/dp:ThisModel

The DPWS ThisModel metadata information. See specification for details.
/dd:Device/dp:ThisDevice

The DPWS ThisDevice metadata information. See specification for details.
/dd:Device/dd:Service/@serviceld

URI for the service. When omitted, implied value is the classld of the service class.
/dd:Device/dd:Service/dd:ServiceClass/@classld

Reference to the implementation class for the service.
/dd:Device/dd:Service/dd:ServicePort

When omitted, the service will use a generated physical network address.
/dd:Device/dd:Service/dd:ServicePort/wsa:Address

Absolute or relative URI corresponding to a physical network address of the service. When relative,
the service will use the device network address.

/dd:Device/dd:Service/dd:ServicePort/wsa:ReferenceParameters
Not used in first version.
/dd:Device/dd:Service/dd:ServicePort/wsa:Metadata
Not used in first version.

/dd:Device/dd:Service/dd:Reference/@name

11/28

Name of the reference that is being set. Should match one of the references defined in the service class.
/dd:Device/dd:Service/dd:Reference/wsa:EndpointReference

Used when the reference can be bound statically to a target.
/dd:Device/dd:Service/dd:Reference/wsa:EndpointReference/wsa: Address

Network address for the reference target.
/dd:Device/dd:Service/dd:Reference/wsa:EndpointReference/wsa:ReferenceParameters

Not used in first version.
/dd:Device/dd:Service/dd:Reference/dd:DiscoveryHints

Used when the reference will be bound using the WS-Discovery mechanisms. Once the device EPR is
resolved the type defined in the service class reference should be used to select the referenceEPR.

/dd:Device/dd:Service/dd:Reference/dd:DiscoveryHints/@onMultipleMatches

Specifies the behaviour when more than one reference is found. Defaults to pickOne.
/dd:Device/dd:Service/dd:Reference/dd:DiscoveryHints/@bindingTime

Specifies whether the reference must be bound at deployment or run time. Defaults to deployment.
/dd:Device/dd:Service/dd:Reference/dd:DiscoveryHints/@onReferenceLost

Specifies the expected behaviour when a bound reference is not available any more. Defaults to retry.
/dd:Device/dd:Service/dd:Reference/dd:DiscoveryHints/@serviceld

If present, should be used to select the reference EPR.
/dd:Device/dd:Service/dd:Reference/dd:DiscoveryHints/dd:Hint

Lookup parameters to be used for the discovery lookup request. More than one set of parameters can
be provided, and will be considered as a union.

/dd:Device/dd:Service/dd:Reference/dd:DiscoveryHints/dd:Hint/dd:Types
Set of types to be used for the discovery lookup request.

/dd:Device/dd:Service/dd:Reference/dd:DiscoveryHints/dd:Hint/dd:Scopes
Set of scopes to be used for the discovery lookup request.

/dd:Device/dd:Service/PropertyValue

The value of the property that is being set. Must be compliant with the property type of the
corresponding property declared in the service class.

/dd:Device/dd:Service/PropertyValue/@name

The name of the property that is being set.

2.4. Service resource

In this context, the service resource will simply refer to the service class that was registered to one device —
hosted service. From that point, the device will make it available as one of its services.

12/28

3. Resources Life Cycle

Although, these three resources: device, service and service class have their lifecycle (and own state), their
lifetimes are strongly linked. In some cases, the delete of resources will be prevented due to locking
conditions.

All these resources have a common parameter that stores its current state. This feature allows the integrator
to retrieve the current resource state at any time, being, at the same time, the major condition parameter in
the resource lifecycle state-machine in order to detect some lock cases in interdependent resources.

3.1. Resources identifiers

The resource identification leverages the default addressing model of WS-Management [2], it uses:
wsa:To (required): the transport address of the service

wsman:ResourceURI (required): the URI of the resource class representation or instance representation
wsman:SelectorSet (optional): identifies or selects the resource instance to be accessed if more than one
instance of a resource class exists.

Service class identifiers:
e wsman:ResourceURI: http://www.soa4d.org/dpwscore/2007/08/dyndepl/resources/ServiceClass

e wsman:SelectorSet: dp:ServiceClassld (identifier of the service class)

Device identifiers:
e wsman:ResourceURI: http://www.soa4d.org/dpwscore/2007/08/dyndepl/resources/Device

¢ wsman:SelectorSet: dd:Address (uuid of the device)

Service identifiers:
e wsman:ResourceURI: http://www.soadd.org/dpwscore/2007/08/dyndepl/resources/Service

¢ wsman:SelectorSet: dd:Address (uuid of the device), dp:Serviceld (identifier of the service)

3.2. Device and Service Resources state

Device and Service can be in one of the following states:
INSTALLED - The resource has been successfully installed.

READY — All references that the resource needs at deployment time are available. This state indicates that
the resource is either ready to be started or has stopped.

STARTING - The resource is being started, the start operation has been called, and the start operation is not
yet completed.

ON - The resource has successfully started and is running.

STOPPING - The resource is being stopped. The stop operation has been called but the stop operation is not
yet completed.

UNINSTALLED - The resource has been uninstalled. It cannot move into another state.

13/28

http://www.soa4d.org/dpwscore/2007/08/dyndepl/resources/ServiceClass
http://www.soa4d.org/dpwscore/2007/08/dyndepl/resources/Device

State diagram Resource
Create

Get

| Transient state |
UNINSTALLED STOPPING JETrrcsrspames '

P o

Figure 4: State Diagram Resource

When a device and/or a service are created, first they are stored in the persistent storage of the device
platform (and service container), and then the registry of the DPWS middleware is initiated accordingly.
They remain there until they are explicitly deleted.

3.3. Service class resource state
Service class can be in one of the following states:

INSTALLED - The resource has been successfully installed.

READY - All references that the resource needs at deployment time are available. This state indicates that
the resource is either ready to be started or has stopped.

UNINSTALLED - The resource has been uninstalled. It cannot move into another state.

State diagram “Service class”

Put/Get

Delete
E Transient state 1

UNINSTALLED | '

[Stable state]

Figure 5: State Diagram “Service Class”

I e]

When a service class is created, first it is stored in the persistent storage of the device platform, and then the
registry of the DPWS middleware is initiated accordingly. It remains there until it is explicitly deleted.

14/28

3.4. Resources operations

All resources support the following operations:

wxf:Create: this operation creates the resource; the wsman:ResourceURI is required at creation; the
wsman:SelectorSet (uuid of the device) is also required for the service resource creation; Multiple
creation could be supported according to the device platform; if no more resource could be created,
the service should return a dd:NoMoreSpace fault.

wxf:Get: this operation retrieves the resource representations; the wsman:ResourceURI and
wsman:SelectorSet are required

wxf:Put: this operation updates the resource representations; the wsman:ResourceURI and
wsman:SelectorSet are required.

wxf:Delete: this operation deletes resource instances; the wsman:ResourceURI and wsman:SelectorSet are
required at the deletion.

Note:
0 wsman refers to the namespace “http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd”.

0 wxf refers to the namespace "http://schemas.xmlsoap.org/ws/2004/09/transfer".

Device and Service resources support these add-on operations
dd:Start: this operation starts the resource
dd:Stop: this operation stops the resource

dd:GetState: this operation gets the state of the resource

3.5. Deploying resources

All the information related to devices and according services available on a physical device are stated in a
XML file (XML Device Configuration File) that can be accessed through a WS-Management protocol
application. This file contains the elements that describe service classes, devices and hosted services in each
device — the complete collection of elements available on that particular physical device. This file will be
updated every time a service class or device is deployed or when a service class is registered to a particular
device becoming a hosted service (see Figure 5). However defined on the same file, the built-in services are
protected from external modifications.

15/28

WS-Management

.

A \
Built-in Dynamic Deployment
Physical Device Model Logical Hosted
Devices Models
XML Device

PR R X

Configuration File

|
Setup & Diagnosis Services
Services Classes Classes

4
P T L L T T P L L T TR

Figure 6: Built-in vs. dynamic deployed elements

Remarks:

A single service class can be registered to several different devices, either hosted on the same or on
two or more devices. Still, in the last case, an identical service class must be also deployed on those
devices.

A device can host several different services, registered from several different service classes.

It is not advisable to deploy identical devices (same model): it will become difficult to distinguish
between two or more identical devices during discovery phase — only possible through wuuid
reference.

3.5.1. Deploying a service class

This operation consists in deploying the service class: the service implementation representation and its
implementation. Each service class is uniquely identified by its ServiceClassld. The device platform must
assign this unique resource identifier.

Enabling operation
wxf:Create — the ResourceURI is required.

The wxf:CreateResponse must return the resource identifier (ServiceClassld) in case of successful
operation, in the other case, the service should return a fault

Pre-State
NA

Pre-conditions

16/28

0 The resource description must be correct, otherwise the service should return a
wxf:InvalidRepresentation fault.

Operation

0 The creation of the service class is validated. (NA => INSTALLED => READY)
Post conditions

0 The creation of the service class is valid
Post-state

INSTALLED or READY

3.5.2. Deploying a device

This operation consists in registering and enabling a device into the device platform. Each device resource is
uniquely identified by its uuid. The device platform must assign this unique resource identifier.

Enabling operation
wxf:Create — the ResourceURI is required.

The wxf:CreateResponse must return the resource identifier (uuid) in case of successful operation, in
the other case, the service must return a fault.

Pre-State
NA
Pre-conditions

0 The resource description must be correct, otherwise the service must return a
wxf:InvalidRepresentation fault.

0 The same pre-conditions as those for the deployment of a service — a deployment of a device
implies the deployment of its services.

Operation
0 The internal references to the services are verified.

0 The services are deployed — they will remain in INSTALLED state until the device goes to
READY state.

0 The device is deployed. (NA => INSTALLED => READY)
Post conditions

0 The creation of the device and it services are valid.

0 The device and its hosted services are ready to be started.
Post-state

INSTALLED or READY

3.5.3. Deploying a service

This operation consists in registering a service to a device. Each service is uniquely identified by its
Serviceld. The device platform must assign this unique resource identifier.

17/28

Enabling operation
wxf:Create — the uuid of the device and its ResourceURI are required

The wxf:CreateResponse must return the resource identifier (Serviceld) in case of successful
operation, in the other case, the service must return a fault

Pre-State
NA
Pre-conditions

0 The device uuid and ResourceURI must be correct, otherwise the service must return a
wxf:InvalidRepresentation fault.

0 The resource description must be correct, otherwise the service must return a
wxf:InvalidRepresentation fault.

Operation
The creation of the service is validated:
0 Internal references (to the service class) are verified
0 The service class is registered to the service. (NA => INSTALLED => READY)
Post conditions
0 The creation of the service is valid.
0 The service will be then registered to a logical device — it will become its hosted service.
Post-state

INSTALLED or READY

3.6. Starting device and service resources

This operation could not be applied to the service class resources since it only consists of a service
representation and implementation details.

3.6.1. Starting a service

This operation consists in starting a hosted service on a device.

Enabling operation
dd: Start — the uuid of the device, the Serviceld and its ResourceURI are required.

The dd:StartResponse must return the service state in case of successful operation, in the other case,
the service must return a fault

Pre-State
READY

Pre-conditions

18/28

0 If the service is already on STARTING or ON state, this operation is transparent — the service
is already started or in its way to start; any other state will deliver a fault message.

0 The selectors uuid, Serviceld and ResourceURI must be correct, otherwise the service must
return a wxf:InvalidRepresentation fault.

0 The resource description must be correct, otherwise the service must return a
wxf:InvalidRepresentation fault.

Operation

0 The service will be started, but it remains in the “STARTING” state while the hosting device
is not into the ON state. (READY => STARTING => ON)

Post conditions

0 The service will be started (or ready to start when the device passes to ON state) and it will
be possible do be discovered and invoked as a hosted service of a particular device.

Post-state

ON

3.6.2. Starting a device

This operation consists in starting the device and, by consequence, also all its hosted services.
Enabling operation
dd:Start — the uuid of the device and its ResourceURI are required.

The dd:StartResponse must return the device state in case of successful operation, in the other case,
the service must return a fault

Pre-State
READY
Pre-conditions

0 If the device is already on STARTING or ON state, this operation is transparent — the device
is already started or in its way to start; any other state will deliver a fault message.

0 The selectors uuid and ResourceURI must be correct, otherwise the service must return a
wxf:InvalidRepresentation fault.

0 The resource description must be correct, otherwise the service must return a
wxf:InvalidRepresentation fault.

0 Same pre-conditions as for starting a service — the start of device implies the start of its
hosted services.

Operation

0 The device and its hosted services are started — it implies the multicast of a HELLO message
at the end of this process. (READY => STARTING => ON)

Post conditions

0 The device will enter into ON state and it will be now possible to discover it and invoke its
hosted service.

Post-state

ON

19/28

3.7. Stopping device and service resources

As the start operation, this operation could not be applied to the service class resources since it only consists
of service implementation details.

3.7.1. Stopping a service

This operation consists in stopping a hosted service. When a hosted service is stopped, it remains registered
in the device, but it will not be available to be discovered or invoked. Still, to permanently suppress a hosted
service from a device, the operation delete must be used instead.

Enabling operation
dd:Stop - the uuid of the device, the Serviceld and its ResourceURI are required.

dd:StopResponse must return the service state in case of successful operation, in the other case, the
service must return a fault.

Pre-State
ON
Pre-conditions

0 If the service is already on READY or STOPPING state, this operation is transparent — the
service is already stopped or in its way to stop.

0 The selectors uuid, Serviceld and ResourceURI must be correct, otherwise the service must
return a wxf:InvalidRepresentation fault.

Operation

0 The service is stopped — the device will no longer expose it as one of its hosted services.
(ON => STOPPING => READY)

0 The device that hosted that service multicasts the network with a new Hello message —
notify peers that it changed its composition.

Post conditions

0 The service will return to READY state and it will not possible to discover or invoke this
service.

Post-state

READY

3.7.2. Stopping a device

This operation consists in stopping the device and, by consequence, also its hosted service of the device
platform.

Enabling operation
dd:Stop — the uuid of the device and its ResourceURI are required.

The dd:StopResponse must return the resource state in case of successful operation, in the other case,
the service must return a fault.

20/28

Pre-State
ON
Pre-conditions

0 If the device is already on READY or STOPPING state, this operation is transparent — the
device is already stopped or in its way to stop.

0 The selectors uuid and ResourceURI must be correct, otherwise the service must return a
wxf:InvalidRepresentation fault.

0 Same pre-conditions as for stopping a service — the stop of a device implies the stop of its
registered services.

Operation:

0 The device and its hosted services are stopped.

0 The device multicasts the network with a BYE message.
Post conditions

0 The device becomes “invisible” on the network, although it is still deployed in a physical
device. The device returns to READY state, as well as all the services it hosts.

Post-state

READY

3.8. Deleting resources

Contrary to stop operation, this operation will definitely suppress the resources from the device platform,
being necessary to re-deploy them, if needed, later. Still, the relations between different resources are
sometimes critical and should be taken in account when executing the different actions.

3.8.1. Deleting a service class resource

This operation consists in deleting a service class: the service implementation representation and its
implementation. Since services classes are the base of the application, its suppression is constrained to the
devices (hosted services) that are still exploiting it.

Enabling operation
wxf:Delete — the ServiceClassld and its ResourceURI must be provided.

The wxf:DeleteResponse must return an OK code in case of successful delete operation, in the other
case, the service should return a fault.

Pre-State
READY
Pre-conditions

0 The ServiceClassld and ResourceURI must be correct, otherwise the service must return a
wxf:InvalidRepresentation fault.

21/28

0 The service class is not registered to any of the devices deployed on that physical device (as
hosted services); otherwise the service must return the list of devices that are still registered
to this service class (uuids).

Operation

0 Service class is deleted. (READY => UNINSTALLED => NA)
Post conditions

0 The service class is completely suppressed from the device platform
Post-state

NA

3.8.2. Deleting a service resource

This operation consists on deleting a service registered to a device — hosted service.

Enabling operation
dd:Delete — the uuid of the device, the Serviceld and its ResourceURI are required.

The wxf:DeleteResponse must return an OK code in case of successful delete operation, in the other
case, the service should return a fault.

Pre-State
READY or ON
Pre-conditions

0 The selectors uuid, Serviceld and ResourceURI must be correct, otherwise the service must
return a wxf:InvalidRepresentation fault.

Operation

0 Service in ON state: The service is stopped — it implies the sending of a multicast HELLO
message by the device that previously hosted that service. (ON => STOPPING => READY)

0 Service in READY state: .Service is deleted (READY => UNINSTALLED => NA)
Post conditions

0 The device that hosted that service will no longer provide it as one of his hosted services.
Even if the device is restarted, that service will not become available again on that device,
except if a new deployment is done.

Post-state

NA

3.8.3. Deleting a device resource

This operation consists on deleting a device from the device platform. By deleting a device, all its hosted
services will be also deleted — the device element describes which services are registered to it. The services
classes linked to these need to be explicitly deleted (if needed), since they can be in use by other devices.

22/28

Enabling operation
dd:Delete — the uuid of the device and its ResourceURI are required.

The wxf:DeleteResponse must return an OK code in case of successful delete operation, in the other
case, the service should return a fault.

Pre-State
READY or ON
Pre-conditions

0 The uuid and ResourceURI of the device must be correct, otherwise the service must return
a wxf:InvalidRepresentation fault.

Operation

0 Device in ON state: The device is stopped — it implies the stoppage of its hosted services and
the send of a multicast BYE message. (ON => STOPPING => READY)

0 Device in READY state: The device and its hosted services are deleted. (READY =>
UNINSTALLED => NA)

Post conditions

0 The device is permanently suppressed from the device platform (including its hosted
services).

Post-state

NA

3.8.4. Delete all resources from physical device

This operation deletes all resources previously deployed by the integrator in that particular physical device
(logical devices, hosted services and service classes). Although this operation might seem a bit strong, its
application can be envisaged whenever there is a need to reuse that particular physical device to a
completely different or new application, for example.

Enabling operation
dd:DeleteAll — the uuid of the physical device and its ResourceURI are required.

The wxf:DeleteAllResponse must return an OK code in case of successful delete operation, in the
other case, the service should return a fault.

Pre-State
READY or ON
Pre-conditions

0 The uuid and ResourceURI of the physical device must be correct, otherwise the service
must return a wxf:InvalidRepresentation fault.

Operation

0 The logical devices available on that physical device are sequentially deleted (following the
approach described before about how to delete a device resource).

0 The services classes are then deleted (following the approach described before about how to
delete a service class resource).

23/28

Post conditions
0 The physical device will be empty regarding dynamically deployed resources.
Post-state

READY

3.9. Retrieve resources state

The objective of this operation is simply to retrieve the current state of a particular resource. The different
possible states that a particular resource can show during its lifecycle were already described before. The
process of retrieving it is very similar to all different types of resources.

Enabling operation

dd:GetState:
0 Device: the uuid of the device and its ResourceURI are required.
0 Service: the uuid of the device, the Serviceld and its ResourceURI are required.
0 Service class: the ServiceClassld and its ResourceURI are required.

The wxf:GetStateResponse must return the current state of that resource, in the other case, the
service should return a fault. In the case where the resource is in a transitional state, an additional
parameter is added to response giving details why the resource is still in that state.

Pre-conditions

0 The selector parameters (depending on the type of resource) must be correct, otherwise the
service must return a wxf:InvalidRepresentation fault.

Operation

0 The resource existence is verified.

0 The resource state is retrieved from the device platform.
Post conditions

o NA

4. Built-in services

Although in this context WS-Management application is used to allow dynamic deployment of DPWS
devices and services, it is also a built-in service. However, the scope of this chapter is to describe the services
available on the physical device that allows the end-user to configure, monitor and diagnose it.

4.1. Setup services

For TCP/IP Ethernet-capable devices, the setup phase has a major importance since it is the first step to allow
the communication with a device. One of the most common problems is not knowing what is the default IP
address of a new device or the need to change it to be in accordance with actual network parameters. By
allowing retrieving and setting the IP address of the device in a standardized way, the integration phase is
simplified and open to standard tools. The same approach is applied to other configuration parameters.

24/28

In the table below, each group represents an operation available from the “Setup” service, while the
functions define the structures of data to be passed as input/output parameters in each of these operations.

Almost all these services can be considered bidirectional (except “Password Management” — check “Access”
column from the table below). Bidirectional in this context means that it is both possible to retrieve or set the
configuration data — the operation parameters are the same, but the action to perform is either to retrieve or
to set those parameters.

Group Function Data ‘ Type ‘ Access
IP Configuration Ethernet parameters Ethernet frame format Enum R/W
IP parameters DHCP/Automatic/Local | Enum R/W
IP address String R/W
Subnet mask String R/W
Default Gateway String R/W
Master IP Master IP address Address 1 String R/W
configuration Address 2 String R/W
Address 3 String R/W
Parameters Reservation time Long R/W
Holdup time Long R/W
Link failure mode Enum R/W
Password Change password Login String WO
Management Old password String WO
New password String WO

Table 1: Built-in Setup service parameters

4.2. Monitoring services

Similar to built-in setup services approach, but here all services are used to retrieve information — except
“Counters Reset” operation that resets all statistic history.

Group Function Data Type Access
TCP/IP statistics TCP/IP parameters Device name String RO
IP address String RO
Subnet mask String RO
Default Gateway String RO
MAC Address String RO
Ethernet statistics Frames received Long RO
Frames transmitted Long RO
Counters reset Command
Ethernet port statistics | Transmit statistics Frames OK Long RO
Collisions Long RO
Excessive Collisions Long RO
Carrier sense errors Long RO
Internal MAC errors Long RO
Receive statistics Frames OK Long RO
Alignment errors Long RO
CRC errors Long RO
FCS errors Long RO
Counters reset Command
Messaging TCP Statistics table (10 Remote IP String RO
statistics entries) Remote port Int RO
Local port Int RO

25/28

Sent messages Long RO

Received messages Long RO

Sent errors Long RO
Counters reset Command

Table 2: Built-in Monitoring services parameters

4.3. Diagnosis services

Again, the built-in diagnosis service approach is similar to the previous. The main different is that there is
also an event source. This event source has the objective to notify the devices that subscribed to it that an
error/fault has been detected.

Group Function |DEIZ:] Type ‘ Access
Identification Configuration Device name String RO
Coding wheels Int RO
IP Configuration IP address String RO
MAC address String RO
URN String RO
Port 2 status Enum RO
... Port N status Enum RO
Status Status Status Enum R/W
Fault (Event) Fault Information Code String RO
Type Enum RO
Time String RO
Description String RO

Table 3: Built-in Diagnostic service parameters

The identification operation has particular interested when there is a need to discover where the physical
device is located, either physically on the area either on the communication network.

The status can be also modified. This functionality can be useful after a maintenance activity — update the
status from an ERROR to an OK state, for example.

Every time the device detects an error/fault it sends an event containing the relevant information about it.
This information can also be later retrieved by invoking the according operation.

The next figure shows an example of a complex industrial system using this diagnostic service: This is a
classical pyramidal architecture. However, thanks to DPWS and WS-Management, such architecture should
be easily modified, and the ability for the devices to push data automatically to the aggregation systems, the
network load in the critical part of the network can be reduced. The diagnostics for all the devices can be
aggregated, and at a higher level, this aggregated status can be polled by the management system.

26/28

Management —)
Eventing
—» servers E

Management /
Polling \

decision

-

J

Status
’ aggregation

D .

Status report

End devices

Figure 7: Diagnostic architecture

The next figure shows the direct advantages of using Web services across all the levels of the infrastructure:
An operator with a PDA can access all the different levels, from the PLC to search the faulty device, to the
device itself to establish a more complete diagnostic, and even to the management infrastructure to order a

new one.

Management /
> decision

_," =

J

PLCs Status

> aggregation

Status report

il Yie

vy

End devices

vy
O b i :I g o :I
(G~ ==

=

G 0l

Figure 8: Maintenance operation

5. Persistence

Persistence is fundamental to avoid reconfiguring/redeploying a device each time it is powered off and on
again. The middleware must warrant the management of resources states along their complete lifecycle.

Not only the configuration parameters must be kept (network addressing, access parameters,
diagnosis/monitoring history, etc.), but also the application elements that were deployed and active within
that physical device before the shut down.

27/28

Regarding the so-called built-in services, the implementation will remain proprietary and it will depend of
each device characteristics. This way, although the interface of these services can remain unchanged, the way
to implement persistence features for these kinds of services is out of the scope of this document.

The elements deployed in a physical device are represented in the XML device configuration file that will be
permanently stored on the device file system. Any update of configuration/deployment will alter this same
file — this way, every time a device is shut down this file will be kept in internal persistent memory.

Every time the physical device is powered on, the XML device configuration file will be interpreted and the
previously deployed elements will be started all over again. Of course, those which were deleted in a
previous session would not be available unless a new deployment takes place.

6. Security

Although security is recognised to play an important role to avoid unauthorized access and modifications of
these resources during its lifecycle, its specification and use-cases are not focused in this document. Still, it
remains a subject for future study and application.

References
[1] Devices Profile for Web Services specification, February 2006

[2] Web Services for Management (WS-Management) Specification version 1.0.0

Annex A — Dissemination Levels

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)
CcO Confidential, only for members of the consortium (including the Commission Services)

Table 4: Dissemination levels for a document

28/28

	1. Introduction
	1.1. Preamble
	1.2. How to specify these generics services

	2. Resources
	2.1. Introduction
	2.2. Service class resource description
	2.3. Device resource description
	2.4. Service resource

	3. Resources Life Cycle
	3.1. Resources identifiers
	3.2. Device and Service Resources state
	3.3. Service class resource state
	3.4. Resources operations
	3.5. Deploying resources
	3.5.1. Deploying a service class
	3.5.2. Deploying a device
	3.5.3. Deploying a service

	3.6. Starting device and service resources
	3.6.1. Starting a service
	3.6.2. Starting a device

	3.7. Stopping device and service resources
	3.7.1. Stopping a service
	3.7.2. Stopping a device

	3.8. Deleting resources
	3.8.1. Deleting a service class resource
	3.8.2. Deleting a service resource
	3.8.3. Deleting a device resource
	3.8.4. Delete all resources from physical device

	3.9. Retrieve resources state

	4. Built-in services
	4.1. Setup services
	4.2. Monitoring services
	4.3. Diagnosis services

	5. Persistence
	6. Security
	References
	Annex A – Dissemination Levels

